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Longitudinal high-frequency plasma oscillations in junction diodes are
examined by the kinetic equation method with allowance for the
asymmetry of the boundary conditions at the boundaries between the
plasma and the electrode barriers, It is shown that when the time
taken by the wave to travel the distance between the electrodes is

half the wave attenuation time in the unbounded plasma, an undamped
wave may occur as a result of the superposition of waves reflected
from the electrodes on the perturbation wave,

In many gas-discharge and semiconductor diodes there are regions
of quasineutral plasma bounded by potential barriers which create
favorable conditions for the formation of standing waves in the plasma,
Studies [1-5] are devoted to the investigation of these waves in an
electron plasma between plane electrodes. In all these instances, how-
ever, the conditions at the two boundaries were assumed to be the
same, In fact, in a glow or arc-discharge plasma, and also in semi-
conductor diodes when current passes through the diode, the conditions
ar the boundaries between the plasma and the space-charge regions
are not the same, For example, in a p-i-n diode in the forward-cur-
rent, mode holes and electrons from the i region that reach the bound-
ary between the i region and the n and p regions behave differently.
Holes are reflected from the boundary between the i and the p regions
and readily pass into the n region, where they recombine; electrons,
on the other hand, readily pass into the p region, where they recom-
bine, but are reflected from the boundary between the i and the n
regions. A similar asymmetry of the boundary conditions occurs at the
boundaries between the positive column and the electrode barriers in
glow and arc discharges, as well as in a cesium diode plasma, This
paper examines the longitudinal high-frequency plasma oscillations
in junction diodes by the kinetic equation method with allowance for
the asymmetry of the boundary conditions.

We will consider a plasma located between plane
electrodes. We denote the distance between the bound-
aries of the plasma with the space-charge regions
near the electrodes by 21 and select a coordinate origin
at the center of the plasma, directing the x axis from
the anode (collector) to the cathode (emitter). In the
linear approximation the one-dimensional problem of
longitudinal plasma oscillations reduces to the integra-
tion of the system of equations
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Here, f, is the unperturbed distribution function
for electrons (@ = 1) and ions or holes (¢ = 2), fq are
small perturbations (fo < fog)s ew, Mg are the charge
and effective mass of the current carriers, 7o their
momentum relaxation time, and E the perturbation of
the electric field. The latter cannot be assumed small
as compared with the unperturbed external field Ey;
therefore in Egs. (1) we have neglected the term
~ Fydfn/0u, since it is of the same order as the term

~ Eb8f,/8u < Edfy,/0u. Here, the effect of ionization
and recombination on the high-frequency plasma oscil-
lations is not taken into account, since the external
field g intheplasma is tooweak for impact ionization,
and the lifetime of the current carriers is several
orders greater than the period of the high-frequency
oscillations. The plasma of a glow or arc discharge
and the plasma in the i region of a p-i-n diode in the
forward mode are strongly ionized [6, 7]. This means
that the electron density in such a plasma is so high
that interelectronic collisions become important in
energy transfer between particles, and an electron
temperature is established. However, thedrift velocity
of the electrons in the field becomes much less than
their thermal velocity. In such a plasma the unper-
turbed carrier distribution function can be described
in the form of a Maxwell function displaced in velocity
space by the drift velocity wy:
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Ina collisiohless plasma, for example, in the drift

mode of a cesium diode, the unperturbed distribution

function can also be taken in the form (3), and in this

case
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We will integrate Eqgs. (1) and (2) for the following
initial and boundary conditions:
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fu(—uw) = fi (), fa (u)!u o= 0 atz==1, (5)
L @hso=0, fo(—u) = fo(u) ate=—1. (6

Condition (4) means that the perturbation is chosen to depend on
the magnitude of the velocity, bur not on its direction. Condition (5)
means that electrons entrained by the perturbation wave and reaching
the cathode boundary of the plasma are reflected from that boundary,
while ions (holes) pass through the boundary and recombine at the
cathode without returning to the plasma. Condition (6) means that
ions (holes) entrained by the perturbation wave and reaching the anode
boundary of the plasma are reflected from that boundary, while
electrons pass through the boundary and disappear at the anode. The
reflection of electrons and ions (holes) is assumed to be instantaneous
and from a plane, not from a layer. This assumption is justified if the
reflection time is much less than the period of the plasma oscillations,
and the width of the reflecting layer is much less than the wavelength.
It will be satisfied the more closely, the higher the potential barrier
and the narrower the space-charge region. Taking the finiteness of the
layer into account leads to additional attenuation of the order of or
less than the attenuation due to collisions with neutrals,
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We will not place any restrictions on the perturbed
field. We merely assume that the field E(x, t) can be
expanded in a Fourier series:
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For initial and boundary conditions (4)~(7) the sys-
tem of equations (1), (2) is solvable.

We integrate Egs. (1), (2) by means of Laplace
transformations with respectto time and Fourier trans-
formations with respect to the coordinates.

Using the Laplace transformation, instead of (1),
(2) we obtain
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Integrating Eq. (8) with respect to the coordinate
with boundary conditions (5), (6), we obtain
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Using (10), (11), we write Eq. (9) thus:
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Here, ®(g;, gy is the initial perturbation function. We
formally continue K.+ (¢) into the region & < 0 with
the aid of the relation

KA (=) = — K7 (D). (13)

Using (13)? we write Eq. (12) in the more compact
form
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and solve it by the Fourier method. Then Eq. (14) is
written as a system of algebraic equations
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The dependence of the field on time can be found for
each Fourier component using the inversion formula
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where Eg(k) is the solution of Eg. (15) determined in
the right half-plane of ¢q. Analytically continuing Eq(k)
into the left half-plane of g, we see that the only sing-
ularities of Eq(k) are the poles representing the roots
of the equation

Det [[1 + A, (k) + A4, (k) 164, +

-+ By (—k, —ky) + By (k, k)| = 0. (18)

At large t the solution E(k,t) will be proportional
toedt, where q = = iw — ¥ istheroot of Eq. (16)having
the greatest real part. Here, w is the oscillation fre-
quency, and y the attenuation constant. Equation (16)
is the dispersion equation of the oscillations of a
bounded plasma in an external electric field; it is valid
for both high~frequency and low-frequency plasma
oscillations. As I — = theterms By inEq. (18)vanish
and the latter takes the form

14+ A, (k) + A4, (k) = 0. (19)

Equation (19) coincides with Eq. (10) of [8] derived
for the oscillations of an unbounded plasma in an ex-
ternal electric field.

We will consider high-frequency plasma oscillations
whose frequency is of the same order as the Langmuir
frequency of the electron oscillations
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We assume that the phase velocity w/k of the waves
is much greater than the thermal velocity of the part-
icles s, = (WT,/my)*/?. 1t does not make sense to
consider the problem of high~frequency plasma oscil-
lations with boundary conditions at a wave phase ve-
locity comparable with or less than the electron ther-
mal velocity, since in this case the Landau damping
is comparable with or greater than the frequency of
the oscillations, and the boundary conditions have no
effect on them.

We introduce the dimensionless variable and param-
eters

u w iq,
B [k|s,

In these variables for the waves considered we can
represent the quantity A, (k) in the form of an asympto-
tic series [8]
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where a, is the Debye radius of the particle a. In the
integral By, we will confine ourselves to linear terms
of the expansion of the integrand in powers of v, <1
and represent it in the form of a sum of three integrals:
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The integral I is easily evaluated. Asymptotically
at B, > 1 it is equal to

1
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In order to evaluate the second integral we employ
the stationary phase method. For this purpose we re-
place @4(u)withthe firstterms of the series expansion
in powers of (u — uy):
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where uy is the root of the equation ¢'(uy) = 0:

uy = e iy 2TRTT]Ba | (23)
and
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We take the integration path parallel to the real axis
passing through the point u = uy. The singular points
u =By and u = Byky /k will lie above this path even at
ImBg < 0, if |Im Bal <|Im uy. We assume that the lat-
ter inequality is satisfied, since we are considering
oscillations for which u = B is close to the real axis.
Evaluating the integral I; by the stationary phase
method, we obtain
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Obviously, at 18g! » 1 the modulus of the square
lu12| is much greater than unity at all values of n =
= ki/7 and is the greater, the greater n. Therefore
the correction I; will be significant only for integers
n close to unity. For these n, obviously, 1Ba?l >
> |u,%l, and from (25) we have approximately
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A similar formula is obtained for I, but in this
case it is necessary to replace

lud| by (22| = VE up].

We note that the real parts of I; and I are much
smaller than the real part of Ij; therefore they can be
neglected in expression (21) and only the imaginary
parts retained. Thus, we can finally write
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Substituting (20) and (27) into Eq, (16) makes it pos-
sible to solve the problem of determining the frequency
and logarithmic decrement in a junction diode.

We will consider the electronic plasma oscillations

.in a gas-discharge junction diode. In determining the
frequency and logarithmic decrement of the electronic
plasma oscillations it is possible to disregard the
motion of the ions and set Ay = By = 0 in Eq. (16), In
the first approximation we will not take into account
the real part of the correction By( — k, — ky). Going
over to dimensional quantities, we introduce the no-
tation
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We write Eq. (16) in the form
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Isolating the real part of the determinant and con-
sidering that A;"(k) < A{"Kk), we obtain

ReA= (1 —A4/ (%) =0 (29)
k

As may be seen from (29), the corrections By" do
not enter into the real part of the determinant. This
means that in the approximation considered the pres-
ence of boundaries does not affect the oscillation fre-
quency and for a given wave number k the frequency
is found from the equation

1 — A4,k =0 (30)
whose solution is given by the Vlasov formula
o = o, (1 + %, k22 + (wk). (31)

In the next approximation a small correction equal
to —=1/2, Re By(—k, —ky) is added to the frequency,
In determining the imaginary part of the determinant
we note that the product of the off-diagonal terms iBy"
is compensated by the product of the same terms in
the diagonal elements of the determinant. Consequently,

Im A = D[4 (k) + By (F)] x
. k

x 1 d— 4y @&)-0 B, (32)
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For those k for which Eq. (30} is satisfied, and
consequently

I 4 —ay@y)==0

K=k
and from (32) we obtain
Ay (k) =B (k) = 0. (33)

From this we find the wave attenuation
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As may be seen from (34), the presence of plasma
boundaries affects the wave attenuation in such a way
that a wave propagating from the anode to the cathode
(k > 0) is more strongly, and one propagating from
cathode to the anode (k < 0) less strongly damped than
awave in the unbounded plasma. The lesser attenuation
of a wave moving from the cathode to the anode is
associated with the fact that on it there is superim-
posed a wave due to the same perturbation reflected
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from the cathode and having the same wavelength and
phase velocity. In this case when the time taken by
the wave to travel the distance between the electrodes
is half the wave attenuation time in the unbounded
plasma
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a wave moving from the cathode to the anode becomes
continuous in the course of the time interval during
which the perturbation acts. The electron drift ve-
locity plays only an unimportant part, since lwyl/sy <
<« 1, However, it still helps to build up an undamped
wave moving in the direction of electron drift.

In a semiconductor diode it is necessary to take
hole oscillations into account as well as electron oscil-
lations. In a semiconductor diode for the high-fre-
quency oscillations we have
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As may be seen from (36}, boundaries have no ef-
fect on the oscillation frequency. As may be seen from
(87), boundaries likewise have no effect on the wave at-
tenuation if wy = w,, which holds when the effective
masses of electrons and holes are equal my = my in an
intrinsic semiconductor (for example, in the i region
of a p-i-n diode) or when ny/my = ny/m, in a doped
semiconductor. However, if wy > wy, we have purely
electronic plasma oscillations, possibly with satis—
faction of condition (35), when undamped oscillations

propagating from the emitter to the collector are ob-~
served. Since 1/7; ~ 10'% sec™!, while for satisfaction
of condition (35) it is necessary for wy to be greater
than 1/74 by at least an order, the electron density
must be ng >4 -10%my/my cm™, where my is the mass
of the free electron. However, if wy > wy, we have
purely hole oscillations, for which there may also be
satisfaction of condition (35) with undamped oscillations
propagating from the collector to the emitter. Since
1/7, = 1012 sec™!, for condition (35) to be satisfied it
is necessary that ny > 4- 10%m,/my om™.

I wish to thank A, I. Gubanov for reading the manu-
script.
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